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Abstract A numerical methodology is presented for the
modeling of convection-diffusion controlled mushy region
change problems. An ef®cient and accurate non-staggered
control volume method, based on the momentum inter-
polation practice and on a high-order convection differ-
encing scheme, is proposed for the solution of the
continuum model equation. Suitable numerical techniques
are implemented to overcome the numerical instability
problems resulting from the strong coupling between the
equations of the model. Special attention is given on the
ef®cient treatment of the latent head evolution in the en-
ergy equation. A new numerical technique is developed
which accounts for the dependence of the latent heat on
the variation of temperature and concentration ®elds. The
proposed method is applied on two phase change prob-
lems. Satisfactory agreement with previously published
results is observed.

1
Introduction
Processes related to melting and solidi®cation are widely
encountered in many industrial applications (Flemings
1974), such as metal alloy casting, food freezing, ice
forming, thermal energy storage, etc. Mathematical mod-
eling of transport phenomena that occur during phase
change is becoming an important tool for predicting the
state of the ®nal product. Problems related to improper
control of the transport mechanisms involve void forma-
tion, concentration variation of the dissolved component,
and cracking due to thermal stresses.

Due to the absorption or release of latent heat and the
presence of complex interfacial structures that characterize
the phase change of most materials, the exact solution of
conservation equation is impossible (Zerroukat and
Chatwin 1994). The numerical models for solving phase
change problems can be conveniently divided into two
categories (Samarkii et al. 1993). The ®rst category in-
volves methods that utilize independent conservation
equations for each phase. A moving-front practice is fol-

lowed, where the mesh is continuously updated so that it
always coincides with the phase change front. Such
methods are referred to as multiple region or multiple grid
methods and are usually applied on the analysis of pure
materials. The second category consists of single region
models that utilize a system of conservation equations
than can be equally applied to both phases (Bennon and
Incropera 1987; Voller et al. 1989). The latent heat evolu-
tion is accounted for in the energy equation by the enth-
alpy formulation (Swaminathan and Voller 1992, 1993;
Yang and Ebadian 1994), while no explicit conditions on
the interface are required and the numerical solution can
be carried out on a ®xed grid. Single region models are
well suited for treating the phase change of mixtures
where, the latent heat is evolved over a temperature range
(Raghavarao and Sanyasiraju 1996).

The major advantage of the single region models is that
their solution can be achieved by conventional numerical
methods. However, the numerical treatment of phase
change problems requires special attention. In order to
predict the complex interfacial structures, high accurate
numerical schemes must be used. Moreover, particular
attention must be directed to the handling of the latent
heat evolution associated with the phase change.

The purpose of this paper is to develop an ef®cient and
accurate numerical methodology to deal with binary solid-
liquid phase change problems. A control volume numeri-
cal method based on non-staggered grids and a high-order
convection differencing scheme will be used. The focus in
this paper is on the numerical treatment of the energy
equation, in particular on the ef®cient handling of the
coupling effects of the temperature and concentration on
the evolution of the latent heat. The performance of the
present method will be examined through the solution of
two test problems. The ®rst problem concerns the iso-
thermal solidi®cation of a liquid driven by conduction and
the second problem concerns the solidi®cation of an
aqueous NH4Cl solution.

2
Mathematical formulation

2.1
Problem description
Consider a binary mixture (e.g. a binary alloy) of initial
concentration Cinit and initial temperature Tinit > Tl (the
liquidus temperature), in a rectangular cavity insulated on
three sides as illustrated in Fig. 1. At time t � 0, the left
side is cooled to a temperature Twall < Tl so that freezing
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occurs. At later times the cavity contains three regions. A
solid region near the left side, a liquid region near the right
side and a mushy (solid and liquid) region in between. In
most materials the mushy region has a dendritic crystal-
line structure (Flemings 1974). The system is in¯uenced
by diffusion phenomena and natural convection ¯ow,
which is caused by the temperature and concentration
gradients.

2.2
Model equations
The behavior of a phase change system can be described
by the conservation equations for total mass, momentum,
energy and species in the solid, liquid and mushy zones. In
addition, appropriate relations are necessary for deter-
mining the mass fraction of solid as a function of tem-
perature and concentration and also for representing the
variation of mixture properties in the mushy region. The
model adopted in this study is similar to that developed by
Bennon and Incropera (1987), and can be derived from the
mixture theory or through a volume averaged procedure
(Ni and Beckermann 1991). Under the assumptions of
Newtonian laminar ¯ow, constant densities except for the
buoyancy terms, negligibly shrinkage-caused ¯ow, local
thermodynamic equilibrium and negligible species diffu-
sion in solid, the governing equations may be written as
follows:
Conservation of mass

oq
ot
� div�qu� � 0 : �1�

Conservation of momentum

o
ot
�qu� � div�quu� � div ll

q
ql

grad u

� �
ÿ op

ox
ÿ ll

K

q
ql

u ; �2�

o
ot
�qv� � div�quv� � div ll

q
ql

grad v

� �
ÿ op

oy

� qBÿ ll

K

q
ql

v : �3�

Conservation of energy

o
ot
�qh� � div�quhl� � div�k grad T� : �4�

Conservation of species

o
ot
�qC� � div�quC� � div�q D grad C�

� �q D grad �Cl ÿ C��
ÿ grad�qu�Cl ÿ C�� ; �5�

In the above equations, the mixture density, velocity,
enthalpy, species concentration, thermal conductivity and
diffusion coef®cient are de®ned as follows:

q � gsqs � glql �6�
u � flul �7�
h � fshs � flhl �8�
C � fsCs � flCl �9�
k � gsks � glkl �10�
D � flDl ; �11�
where fs; fl are the mass fraction of the solid and liquid
phase respectively and are related to the volume fractions
gs; gl through:

qfs � qsgs and qfl � qlgl : �12�
The term qB, in the v-momentum equation, is the buoy-
ancy term used to induce natural convection in the cavity.
Assuming the Boussinesq approximation to be valid, this
term is replaced by:

qBx � qref g�bT�T ÿ Tref� � bC�Cl ÿ Cref�� ; �13�
where Tref ;Cref are the reference values of temperature and
concentration (usually coincide with the eutectic values),
qref is the density existing at the reference conditions and
bT ; bC are the thermal and solutal expansion coef®cients.

The last terms of the right hand side of Eqs. (5) and (6)
represent the interactions of two phases in the mushy re-
gion and are derived on applying the Darcy's law for ¯ows
in a porous media. Assuming the permeability K to be
isotropic, this term is given from the Karman-Kozeny
equation:

K � K0
g3

l

�1ÿ gl�2
" #

; �14�

where the permeability coef®cient K0 depends on the
morphology of the porous media. In the pure liquid region
(gl � 1) and in the pure solid region (gl � 0), Eq. (14)
reduces to K � 1 and K � 0, respectively.

2.3
Closure of the system
Closure of the system of governing equations requires
additional relationships for the phase mass fractions fs; fl

and the liquid phase composition Cl. In the continuum
phase change model described above these quantities are
indirectly determined from the equilibrium phase diagram
(Fig. 2). On assuming straight liquidus and solidus lines,
the solid mass fraction can be expressed as:

Fig. 1. A schematic of solidi®cation in a rectangular cavity

410



fs �
1 T < Te ,
�fse; 1� T � Te ,

1
1ÿkP

TlÿT
TMÿT Te < T < Tl ,

0 T � Tl ,

8><>: �15�

where Te is the eutectic temperature. TM is the melting
point of the pure material (as C ! 0), Tl is the liquidus
temperature give be:

Tl � TM � Te ÿ TM

Ce
C : �16�

kP is the equilibrium partition ratio (kP � Cl=Cs) and fse is
the solid mass fraction at the onset of the eutectic reaction:

fse � 1

1ÿ kP

Tl ÿ Te

TM ÿ Te
: �17�

The liquid phase species concentration is given by:

Cl � T ÿ TM

Te ÿ TM
Ce : �18�

Finally, assuming constant speci®c heats of the two phases
�cps; cpl�, though not necessarily equal, the phase enthalpies
can be expressed as:

hs � cpsT; hl � cplT � hf �19�
where hf is the latent heat of phase change.

3
Numerical methodology

3.1
Control volume method
Each one of the governing equations, with the exception of
the energy one, can be recast in the form:

o
ot
�q/� � div�qu/� � div�C grad /� � S/ �20�

by properly de®ning the quantities /, C and S/. The sys-
tem of equations, subjected to the required boundary
conditions, was solved by an implicit control volume
based method. The main characteristics of the method are:

(a) The adoption of a non-staggered grid arrangement
using the momentum interpolation method (Rhie and
Chow 1983) as modi®ed by Majumdar (1988), to avoid
the non-physical ``checkerboard'' oscillations in the
pressure ®eld.

(b) The application of the segregated SIMPLEC algorithm
to resolve the pressure velocity coupling.

(c) The use of the second order QUICK differencing
scheme, as presented in Arampatzis et al. (1994), for
the discretization of convective terms, to ensure the
accuracy of the results.

(d) The solution of the set of the algebraic equations, re-
sulting from the discretization of the model equations,
by the strongly implicit procedure (SIP) (Stone 1968),
aided by a block-correction procedure.

It is well known that the control volume methods show
poor convergence properties at large Rayleigh and Prantl
numbers, due to the strong bi-directional coupling be-
tween the energy and momentum equations. In order to
decrease this coupling a progressively smaller under-re-
laxation factor is used in the momentum equations as
follows.

x � xinite
ÿrm �21�

where xinit is the initial under-relaxation factor, m is the
iteration number and r determines the rate of decrease. A
rate value of 0.05 was used.

3.2
The treatment of the energy equation
The ®nite volume discretization of the energy equation (4)
cannot be directly accomplished, because it contains as
unknowns both the temperature and the mixture enthalpy.
However, properly handling the terms of this equation, it
can be recast in the from of Eq. (20) with dependent
variable the temperature (T-based methods) (Zeng and
Faghri 1994) or the enthalpy (h-based methods) (Bennon
and Incropera 1987). The major problem with the nu-
merical solution of the energy equation is the treatment of
the latent heat evolution. In T-based methods, the latent
heat is accounted for by de®ning an effective heat capacity
or through a heat source term while in the h-based
methods it is included in the de®nition of the mixture
enthalpy (Eqs. (8), (9)). Special attention should be given
to the treatment of the latent heat evolution when mod-
eling binary phase change systems, because this term is a
function of the temperature as well as of the mixture
concentration. This fact produces a strong coupling be-
tween the energy and species concentration equations and
causes numerical instability problems.

In the present study, an extended version of the pre-
dictor-corrector method proposed by Swaminathan and
Voller (1993) has been developed. The focus was be on the
ef®cient handling of the coupling effects of temperature
and concentration on the evolution of the latent heat. The
key steps in this approach are:

a) In a given time step, the energy equation (4) is written
if the following discretized form:

aPTm�1
P �

X
M

aMTm�1
M

� qV� �P
c1Dt

h0
p ÿ hm�1

p

� �
� b �22�

where the superscript m indicates the iteration level.
b) In the predictor step the enthalpy is linearized using a

Taylor expansion:

Fig. 2 a A typical equilibrium phase change diagram and (b) the
soild mass fraction ± temperature relationship
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hm�1
p � hm

p �
ohm

oT
Tm�1

P ÿ Tm
P

ÿ �
� ohm

oC
Cm�1

P ÿ Cm
P

ÿ � �23�
c) Using this expression, Eq. (22) can be written as:

aP ÿ SP� �Tm�1
P �

X
M

aMTm�1
I � b� SU �24�

where

SP � ÿ qV� �Pohm

clDtoT
�25�

SU � qV� �P
clDt

� h0
P ÿ hm

P �
ohm

oT
Tm

P �
ohm

oC
Cm

P ÿ Cm�1
P

ÿ �� �
�26�

d) Equation (24) is solved for the current temperature
®eld Tm�1

P .
e) In the corrector step the enthalpy ®eld is updated via

Eq. (23). Then, the temperature at nodes where phase
change occurs is corrected to be consistent with the
new values of the enthalpy.

The partial derivatives of the enthalpy with respect to
temperature and concentration can be evaluated from the
de®nition of the mixture enthalpy (Eqs. (8), (19)) as:

oh

oT
� fscps � flcpl

ÿ �� cps ÿ cpl

ÿ �
T ÿ hF

ÿ � ofs

oT
�27�

oh

oC
� cps ÿ cpl

ÿ �
T ÿ hF

ÿ � ofs

oC
�28�

where the derivatives of the solid mass fraction can be
analytically derived from Eq. (15) and the lever rule. At the
discontinuity of the fs�T� curve, the slope is approximated
by an arbitrarily large value (e.g. 1010).

The corrector step (e) is similar to the post-iterative
correction scheme (Comini et al. 1990) and will take into
account of cases where a nodal temperature falls from
above the liquidus to below the solidus temperature in one
time step.

The last term in Eq (26) includes the effects of the
concentration variation on the latent heat evolution and
effectively handles the coupling of energy and species
conservation equations. However, the solution of species
conservation differences Cm

P ÿ Cm�1
P

ÿ �
must be stored in

order to be used in the source term of the energy equation.

4
Results and discussion

4.1
Model verification
In order to check the model and code, simulations of
previous published results for diffusion controlled phase
change problem were undertaken. The problem concerns
the isothermal solidi®cation of a liquid in a impermeable
and rigid box. The box has an initial temperature of
Tinit � 1535�C and at time zero, the temperature at walls

was set to Twall � 1150�C which is lower then the melting
temperature Ts � 1500�C. The thermophysical properties
of the liquid and solid are assumed to be equal and con-
stant, q � 7200 kg=m3, c � 750 J=kgK, k � 30 W/mK and
k � 262:5 kJ/kg K. Due to the symmetry of the problem,
only one quarter of the box is considered. A uniform grid
of 40� 40 nodes and a time step of 250 s were used. In
Fig. 3 the temperature history at the center of the domain
and the variation of solid fraction in the box are portrayed.
The predicted results are compared with those presented
by Swaminathan and Voller (1992). The overall agreement
between results, veri®es the accuracy of the model and the
numerical code.

4.2
Implementation to test problem
In order to show the capabilities of the proposed model,
results from the solution of the test problem described in
Sect. 2.1 are presented. The problem domain and the
boundary conditions are shown in Fig. 1. The geometric
data and the thermophysical properties (approximating an
aqueous ammonium chloride solution) are given in

Fig. 3a,b. Isothermal solidi®cation in a box. (a) Temperature
history and (b) progress of solidi®cation
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Table 1. A 40� 40 space grid, property re®ned near the
walls, and a ®xed time step of 1 s were used. Iterations for
each time step were terminated when the sum of absolute
residuals in mass, momentum, solute and energy equa-
tions dropped below 1� 10ÿ6. Calculations were per-
formed on an Intel 133 MHz Pentium processor and
required approximately 20 s of CPU time for each second
of simulation time.

The progress of solidi®cation and the thermo-solutal
driven ¯ow with time are shown in Figs. 4a±c in which
streamlines and contours of solid mass fraction are plot-
ted. Once cooling is initiated at the left wall, a strong
counter-clockwise ¯ow ®eld is established in the liquid.
This ®eld is driven by the high thermal gradients. The
formation of three distinct regions (solid, mushy and liq-
uid) is also indicated. Due to the presence of dendrites, the
natural convection inside the mushy zone is very weak. As
solid is formed, the solute phase is rejected from the solid
in the adjoining liquid, making it less dense than the bulk
liquid. Due to thermal natural convection, this cold, sol-
ute-rich ¯uid accumulates at the top of the cavity. At time
t � 6 min, a small clockwise circulating region appears at
the bottom of the cavity, driven by the solute concentra-
tion gradients. Hence, a double-diffusive interface is
formed, separating the solute-rich ¯uid from the under-
lining ¯uid.

Figures 5a-d show velocity vectors of the ¯ow ®eld and
the temperature ®eld as lines of constant temperatures at
four different times. The velocity vectors clearly show the
development of the thermal and solutal driven ¯ow ®eld.
The isotherms indicate that the temperature gradients are
concentrated in the solid and mushy regions, where the
energy transport is driven by conduction.

The extend of macro-segregation is shown in Fig. 6, in
which the contours of solute concentration at time
t � 6 min are plotted clearly showing the accumulation of
solute-rich ¯uid at the top of the cavity.

5
Conclusions
A stable and accurate numerical method for the solution of
phase change problems has been presented. An extension
of a predictor corrector scheme has been developed which

handles the coupling effects of the temperature and con-
centration on the evolution of the latent heat. The method
applied to the solidi®cation of a mixture in a freezing
cavity. The proposed method successfully predicts the
phenomena observed in experiments such as the growth of
the mushy region, the solute macro-segregation, and the
double-diffusive ¯ow patterns. From these results, it can
be concluded that the proposed method can be used to
analyze various phase change processes.

Fig. 4a±c. Solidi®cation of a binary mixture in a freezing cavity.
Streamlines and solid mass fraction contours at (a) t � 2 min,
(b) t � 4 min and (c) t � 6 min

Table 1 Solidi®cation of a binary mixture in a freezing cavity.
Test problem data and thermophysical properties

Density qs = ql = 1077 kg/m3

Cavity dimensions H = L = 0.025 m
Initial conditions Tinit = 600 K, Cinit = 0.1
Wall temperature Twall = 200 K
Speci®c heat cps = 1870, cpl = 3249 J/kg á K
Thermal conductivity ks = 0.393, kl = 0.468 W/m á K
Viscosity ll = 0.001 kg/m á s
Diffusion coef®cient Dl = 4.8 ´ 10)9 m2/s
Latent heat hf = 3.138 ´ 105 J/kg
Expansion coef®cients bT = 3.83 ´ 10)4 K)1,

bC = 0.257
Eutectic temperature Te = 257.75 K
Melting point of pure material TM = 633.6 K
Eutectic concentration Ce = 0.8
Equilibrium partition ratio kP = 0.3
Permeability coef®cient K0 = 5.56 ´ 10)11
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